A Data-Driven Parameter Prediction Method for HSS-Type Methods

نویسندگان

چکیده

Some matrix-splitting iterative methods for solving systems of linear equations contain parameters that need to be specified in advance, and the choice these directly affects efficiency corresponding methods. This paper uses a Bayesian inference-based Gaussian process regression (GPR) method predict relatively optimal some HSS-type iteration provide extensive numerical experiments compare prediction performance GPR with other existing Numerical results show using has advantage smaller computational effort, predicting more universality compared currently available finding

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Data-driven Method for Crowd Simulation using a Holonification Model

In this paper, we present a data-driven method for crowd simulation with holonification model. With this extra module, the accuracy of simulation will increase and it generates more realistic behaviors of agents. First, we show how to use the concept of holon in crowd simulation and how effective it is. For this reason, we use simple rules for holonification. Using real-world data, we model the...

متن کامل

a cauchy-schwarz type inequality for fuzzy integrals

نامساوی کوشی-شوارتز در حالت کلاسیک در فضای اندازه فازی برقرار نمی باشد اما با اعمال شرط هایی در مسئله مانند یکنوا بودن توابع و قرار گرفتن در بازه صفر ویک می توان دو نوع نامساوی کوشی-شوارتز را در فضای اندازه فازی اثبات نمود.

15 صفحه اول

A Data-Driven Approach for Event Prediction

When given a single static picture, humans can not only interpret the instantaneous content captured by the image, but also they are able to infer the chain of dynamic events that are likely to happen in the near future. Similarly, when a human observes a short video, it is easy to decide if the event taking place in the video is normal or unexpected, even if the video depicts a an unfamiliar p...

متن کامل

A data-driven epidemiological prediction method for dengue outbreaks using local and remote sensing data

BACKGROUND Dengue is the most common arboviral disease of humans, with more than one third of the world's population at risk. Accurate prediction of dengue outbreaks may lead to public health interventions that mitigate the effect of the disease. Predicting infectious disease outbreaks is a challenging task; truly predictive methods are still in their infancy. METHODS We describe a novel pred...

متن کامل

Algorithms for data-driven ASR parameter quantization

There is fast growing research on designing energy-efficient computational devices and applications running on them. As one of the most compelling applications for mobile devices, automatic speech recognition (ASR) requires new methods to allow it to use fewer computational and memory resources while still achieving a high level of accuracy. One way to achieve this is through parameter quantiza...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10203789